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The problem of shape determination is examined for two-dimensional and axisym- 
metric bodies with minimum drag and for nozzles with maximum thrust under 
conditions of steady supersonic flow of inviscid and thermally nonconducting 
gas in the presence and in the absence of irreversible processes of the type 
of chemical reactions proceeding at finite rates. It assumed that the region 
of influence of the part of the contour which is to be determined Is bounded 
by characteristics and does not contain shock waves. The boundaries with 
respect to the body contour are arbitrary; the dimensions of the body, the 
area of the surface, the volume etc. can be prescribed. 

In the present study parameters on the surface of the body determined by 
a system of.' non-linear equations in partial differentials, appear as functlon- 
als of a form which is unknown in advance, In problems solved up to recent 
time Cl to 91 this difficulty is overcome by a transformation to a control 
contour as suggested by Nikol'skii [lo]. However, this transformation is 
applicable ahen only the dimensions of the body-are prescribed and when irre- 
versible processes are not present. 

A method for solution of problems which do not permit such a transfor- 
mation was proposed recently by Guderley and Armitage (113 and independently 
by Sirazetdinov [ 123 . Application of this method to problems of the present 
study permits to obtain the necessary conditions of an extremum which serves 
as a basis for the construction of optimum contours. Furthermore, it is 
demonstrated that in a number of cases it is necessary to permit disconti- 
nuities in Lagrange’s multipliers for continuaus parameters of flow. It is 
shown that these discontinuities can occur along characteristics and stream- 
lines. Relationships for discontinuities are obtained. 

1. Let 

the x-axis 

indepenaent 

cermlned by 

X and y be orthogonal coordinates; in the axlsymmetric cases 

Is oriented along the axis Gl' symmetry from left to right. Au 

variables we take g an.l the flow function Cp , which 

Equat’on 

dq = y’p (- vds -j- udy) 

where 0 is density, 2, u are projections of velocities on the 

y-axes; v = 0 ana 1 for the two-dlmenslonal and axisymmetric case 

lY* irlith the adopted variables the flow is described by Equations 

is de- 

X and 

respective- 
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L, Ez ;+ 
av’P - -.2- = 0 

a* 
(of motion) 

L, 8(u/v) 
2 

_ a(Y”PG 
dY 

+7= 0 (of continuity) 

L,Epug+p7?~++0 (of motion) 

L,++O (of streamlines) 

~~+h&f(~) (of energy) (1.5) 

Here p is the pressure, h the specific enthalpy, H total enthalpy 

which Is a known function of $ . Let the thermodynamic state of the gas 

be defined by the pressure, by the temperature T of ‘approaching degrees 

of freedom of some component of gas and by p, parameters g, connected with 

Irreversible processes (t = l,...., n). These parameters can be concen- 

trations of components, energies of various degrees of’ freedom etc. Let us 

introduce an n-dimensional vector Q = (n, , . . . , p,, ) . Functions of the type 

An 1,“‘, g,) will be written in the form f(q) . By virtue of the above 

mentioned, Equation of state and Expression for h have the form 

P = P (~7 T, s,$), h = h (P, T, q,q) (1 A?) 

The change in parameters q Is described by Equations 

where L and u are vectors with components L, and u)$ ; (u‘ is the I,ate 

of change of parameter 9, . The right-hand members of (1.6) and ‘u, are 

known functions of p, T, p and $ . The presence of ;) shows that dif- 

ferent gases can flow along different streamlines. 

We introduce the sound velocity c through Equation 

Here 

Equations (1.1) to (1.7) form a complete system. For uz + L.’ - w2:, c2 

this system has three families of real characteristics. These streamlirkc 

with $ = const for which Equations (i.3) to (1.5) are satisfied, and Mach 

lines for which ~- 

dx+ 
24 1/zl+ - co F cv ____d~ := Q 

yVpL.lc~ 
(1.9) 

(1.10) 
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Here, vectors are 

The upper Index refers to characteristics of the first family. 

Allvariables are dimensionless. The reduction to dimensionless form Is 
achieved by dividing x and y by 1 , the velocities by m, the den- 
sities by poD, Pressures by p-&a, temperatures by .R-'G~, enihalpies by 
wm2 and $ by 1Cv+l)p, w,,where 1, U, and pm are quantities with dimensions 
of length, velocity and density, R is the gas constant of certain gas. The 
parameters p, are reduced to nondimensional form by taking into account 
their various dimensions. 

0, In the problem under consideration it Is required to find t'le neces- 

sary conditions determining the form of the contour aq which insures a 

minimum of wave drag (Pig. 1) or a rn~~rn~ of thrust (Fig. 2) for a given 

yi c 
flow to the left of the characteristic ao , 

d 

a 

~ 

8 

Y 
-d. 

Pig. 1 

In addition to the position of point a , the 
length of the body ,Y , the area of the side sur- 

face, the volume etc. can be prescribed. 

The desired contour may consist of regions of 
two-sided and outer extremums. The regions are 
determined by the statement of the problem and 
the limits of applicability of utilized equations. 
For fixed length this will be the section bg of 
the straight line x = X , where dx<O is per- 
missible. For a given cross-sectional dimension 
Y the region of the outer extremum will be a 

line p = Y . In the 
flat body such a region 

section of the straight 
axisymmetric case and in the case of a symmetrical 
coincides with a section of the axis of symmetry. 
bllity of Equations (1.1) to (1.7) without taking 
into account shock wave relations, there corre- 
svonds a section of the curve of maximum compres- 

To the limit of appilca- 

sion [6] such that the shock wave which Is formed 
by the approaching flow starts at the boundary of 
the region of influence for the desired area of 
the body. 

The direction of the prescribed contour to the 
left of a and the direction of the contour which 
Is determined from the solution of the variation- 
al problem are different in the general case. At 
a , therefore, passage of flow over a convex cor- 
ner takes place (the case where the flow over the 
contour ab results in shock wave formation at a 
is not considered here). On the basis of techni- 
cal consideration a discontinuity in the vicinity 

can be forbidden, for example, due to 
Zun~aries on CC!= a”~/&?. This will also give 
some part of the outer extremum. Fig. 2 

Among the enumerated regions of the outer extremum we will examine only 
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the first and the last and we will investigate only the case where the para- 

meters are constant in the vicinity of bg and do not depend on the shape 

of the contour ag . With an accuracy to an insignificant factor the wave 

drag or thrust are given by 
b 

x = s Y”PdY + fY’P,dY 
a b 

where b is the connecting point of the region with a two-sided extremum 

and the section bg , pT = const is pressure on 

may eolnciae. 

We have lsoperimetrlc conditions (taking into 

in the form 

the bg ; points b and a 

consideration that II = ux’) 

where KJ are given constants, 4J and poJare known funct!.ons, m is number 

of lsoperimetric conditions; prime designates derivatives (&‘ld~)rL=+l,; lndi- 

ces a, b,... are given to parameters at corresponding points. 

3. We utilize the methods of Guderley, Armitage and Slrazetdlnov [ll and 

121 . On the surface of the body the flow parameters are determined by 

Equations (1.5) and (1.6) and by differential Equations (1.3), (1.4) and 

(1.7) along Bb and (1.1) to (1.3) and (1.7) In the region of Influence 0, 

bounded by characteristics ao and ob and by contour ab . We construct 

the functlonals 

. 
@ = @ (Y, 2, v, P, T, q, x7, A) = y’p + xh3f3 (y, x, v, p, T, q, x’) 

F 

Here hl ,....) 

ELM (Y,#, Q (yt9) 
menslonal vectors 

conditions (2.1), 

ations. 

j=l 

= F (Y, x, x’, A) = y"pT + 5 Aif"' (Y > 5, 2’) 
i=l 

1. are constants, cc (Y)l P (yh ‘I (Yh Pl (Yt$),112 (YT40, 

are variable Lagranges multipliers, y and Q are n-di- 

By vlr%ue of Equations (1.1) to (1.4) and (1.7) and 

variations of’ I and x coincide for permissible vari- 

We shall find the first varlat:on of I in the absence of limitations 
with respect to x”, i.e. for the case where a discontlnulty in the contour 

is permitted (Fig. 1 and 2). 

By virtue of (1.5) and (1.6) 
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6T= 

Therefore if 5 = c (p, T, q, j$, then 

Here 

In order to eliminate 
the process of variation 
tegration by parts and a 
formula 

F, = 5, = K,,, - ’ * I L&J 

CT = (%),,$ 
* . 

‘,i= ($)p T q.+q. ,J 
, ‘1 0. 

variations under the Integral signs which appear in 
due to derivatives, we utilize the formula for in- 
relationship which is a consequence of Green’s* 

where the contour integral is taken along the unvaried boundary of the region 
of Influence in the plane yg , Variation of double integral, which is re- 
lated to a change In boundary G , is not present because the expression 
under the Sntegral Is equal to zero. However, 
W 9 

variatio;s of integral along 
which are connected with a change of coordinates and B are d-: f- 

ferent from zero. Increments in coordinates of these points will be deslg- 
nated by by and nx . With an accuracy to small terms of higher order 
6.X = lix + x’Py . 

Let ad be the ‘closing characteristic of an expansion wave fan. Small 
changes of the contour ag have no influence on the flow in sod . There- 
fore her$&lu;$g ao and cd , variations of parameters are equal to 
zero. disappears because 0 is given, the variation bq, 
disappears by &r&e of Equations (1.7); finally, bull by, and bp, are 
connected with the equality (pulu + pv6v + 5~). = 0 . T%e latter follows 
from Equation (1.3), which at a has the form pudu + p~‘du + dp = 0 and 
the fact that here u = U(P) and u = u(p) and consequently bu = (du/dp)b_c 
and du = tdu/dP)Q . 

By taking Into account what was mentioned above and by utilizing (1.3), 

(1.7) and (1.8) WC find 

+ i (U”~J: -t iJ’ 6~ + iJ2dv + U36p + U6q) dy + 5 (Fx - (F,,)‘} 6x dy + 
I‘ b 

where Go is the region adb; minus and plus subscripts are attached to 

parameters at point b before and after the discontinuity 8 U’ , I/‘, W’, u, 



V and W are known functions of flow parameters and Lagrange's multipliers. 

4, Let us examine various terms of Expression (3.1). For any contour 

a67 some of them can be reduced to zero by a special choice of Lagrange's 

multipliers. We will determine pl, pa, u3 . Q is obtained from Equations 
WI= 0, P= 0, P= 0, w = 0 , which we will represent In the form 

w E &(P-~)~-gpqP-~)~+ 
+ W;;l h -- (Q’. co& v-l = 0 (4.4) 

The system of Equations (4.1) to (4.4) Is-cf the same type as the system 

of flow equations. It is elliptical for w<c and hyperbolic for w > o. 

For w > c there are three families of real characteristics, which colnclde 

with characteristics of Equations (1.1) to (1.7). Along the streamllne 

Equations (4.3) and (4.4) are satigfled, along Mach lines 

d,ul _t -v’;;Ti-zT~ 
y”pv%2 

ctp,+{p,pa (p-f$)-QwW+ 

+Q(w$t$-')?]~+$dx=O (4.5) 

where the upper sign corresponds to characteristics of the first family. 

We obtain boundary conditions along the characteristic db and the con- 

tour a&. 

By equating coefficients in front of bu, bv and bq along dB to 0 

we obtain 

(4.6) 
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If not especially mentioned, here and below the upper signs refer to the 
external problem (Fig.1) and the lower signs to the internal problem (Fig.2); 

~~/a~ along db is determined from (1.10). Satisfaction of (4.6) and (4.7) 
along db leads also to a transformation to zero for the coefficient of v” 

by virtue of (1.10). We find the boundary condition for ab by examining 

coefficients of LP, v2, u3, U . Along ab we determine multipliers a, 8, 

Y and ptt from Equations IJ'= 0, @= 0, l@x 0, U = 0 , which by taking into 
consideration equations for UL and U can be presented in the form 

:O 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

Here lr is transformed by taking Into account (4.10). As initial con- 

ditions for Integration of (4.9) and (4.10) we take 

ab = 0, y -0 (4.13) 

Therefore, for any smooth contour ab , multipliers n, 8, y, wl, p2 
and 0 can be selected such that coefficients of Us, Vi, Il”(t = 1,2,31 f;“, 
v, w in Equation (3.1) ‘are transformed to 0 . 
quirkda"r&Y"this that relationships (4.1) to (4.13) 

kctually, it is re- 
are fulfill.ed. For any 

COntOW ab , the flow in acb can be calculated, for example, by the 
method of characteristics and consequently is known. For known flow para- 
meters, a. along ab are determined by Equations (4.9) and (4.10) 
and ~ond~t~o~~d(4~~3). Subsequently p in particular vIb, is found along 
ab from (4.11), and from (4.5) to (4.8jJwith utilization of glb, the values 

CL1 t u2, w3 and Q are determined along db . Values of these quantities 
along the characteristic db , and P, along the. contour ab with the aid 
of Equations (4.1) to(4.4) or of equlvalent Equations (4.3) to (4.5) Permit 
to find CI~, p2J i&, and 0 in the re ion 
along ab is determined by Equation ( f .12). 

Go. Finally, the multiplier 8 
It is clear that the Lagrange 

multipliers found in this fashion are dependent on the shape of the contour 
ab . 

5* If ab contains a discontinuity (Fig.3), then it is not possible to 

satisfy all obtained condition s with Lagrange's multipliers which are con- 

tinuous in C . Actually, vlf e, cl>, and 0 along characteristic ke are 



found from conditions along kb and dh . Found in this fashion, the value 

wit to the left of the discontinuity will not satisfy Equation (4.11) in the 

general case. Consequently, it is necessary to admit the possibility of 

lines of discontinuity in Lagrange’s multipliers for continuous parameters 

of flow. 

Let 1 be such a line. In the varication of I the region G is divided 

Into regions of continuous Lagrange’s multipliers. In these regions and 

along the boundaries ab and db the functions pl, pa, pa and Q are 

determined in the previous fashion, i.e. Equations (4.1) to (4.13) are satis- 

fled. Let Id be a jump pp along 1 . Since the flow parameters and 

their variations are continuous along II , there appears an additional ln- 

tegral in Expression (3.1) 

s( 
s&k _t S% + S%p _t s 2 6qj dy 

I 
where 6, 9, s3, S are linear orthogonal functions of [pl], [oia], [v3] 

and [a], which also depend on flow par&meters and d*/dy &long 1 . We 
will determine [ p1 J, [pz], [pa] and [Q] such that the following conditions 

&re fulfilled along 1 

Sl : 0, P = 0: s3=() $cL(j 
7 

c d?l 
(5.i) 

If 1 Is not a streamline and not a characteristic, this gives (n + 3) 
linearly Independent linear homogeneous equations with respect to (n + 3) 

variables Cclll, [val, [v~l, TQI . Consequently, in this case we have 

Iki.c,l = [@,I = I&I = 0, IQ1 = u 
i.e. the discontinuity is not present. 

If 1 is a characteristic, then 9 is a 

linear comb~natlon of S’ and 9 and conditions 

(5.1) give 
_-.__ 

@J $ [r-ill; If.iJ -- c’) -- 0 
?J”p$” 

(5.2) 

(5.3) 

Fig. 3 [p21 (p - z) - [QJ yyp3tj = 0 (5.4) 

Furthermore, since (4.5) is satisfied from each side of the cnaracterlstic, 

Here and In (5.2) the upper sign corresponds to a characteristic of the 

first family; a’y/d+ in (5.3) Is determined from (1.10). Equations (5.2) 

to (5.5) determine the jump in all quantities along a given characteristic 
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from the jump In one of these quantities at some point. By virtue of llne- 

arlty and homogeneity of (5.2) to (5.5), all Lagrange multipliers are either 

continuous or discontinuous along the entire characteristic. 

If 3 is a streamline, then d$/dy = 0 and in addition to this .? is a 
linear combination of S’ and s. As a result we obtain 

From this condition and Equations (4.3) snd (4.4) 

These equation@ are also linear and homogeneous, consequently, if only 

at one point of the streamline, IU31 = 0 and [Ql = 0, then these conditions 

are fulfilled along the entire streamline. 

Thus the Introduction of discontlnuitles permits to satisfy all conditions 

of the previous section. In particular, in the case shown In Fig.3 the line 

of discontinuity will be the characteristic ke , 

Continuity in flow parameters was assumed above. Dlscontlnulties in flow 

parameters, for example shock waves, will also be discontinuitles in Lagran- 

ge’s multipliers. When relationships are obtained at such dlscontinuities, 

it is necessary to take into account the relationship between the variation 

of flow parameters from different sides of the dlscoktlnuity, 

6, In accordance with the choice of Lagrange’s multipliers the expression 

for 6~ becomes 

6% - 61 = [CD_. - F, - (@,xt -I- p)_ x_‘lb Ay, + (@x,_ + p__ - Fx,+Ib Axb -” 

-+- $Ay, + ‘? U”6x dy + { (F, - (F,)‘) Bx dy (6.1) 
Q b 

where; in contrast to (3.11, all variations are independent. 

In the region of a two-sided extremum ab the variations in x are arbi- 

trary, consequently the necessary condition for an extremum has the form 

U” 5% @.\: - (P + CD.?) = 0 P, = (30 /ax),, 0. n, T. q. x’. A) (6.4 

For an arbitrary length there Is no end, and In Expression (6.1) only two 

first terms remain, and these are without F+ and F,,, . Siace hx, is arbl- 

trary, the length of the contour is determined by condition 

(a! 4 P)*_ = 0 (6.3) 
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while the ordinate I/~ = gi Is aither given or is found from condition 

{Q - (% + P) +,_ = 0 (6.4) 

For a limited length the end may also be absent. The ordinate kb as 

before is either given or determined from (6.4). In the first caseby, 2 0 

are admissible (the upper slgn refers to the external problem) and the neces- 

sary condition for a minimum of drag or a minimum of thrust will be 

I@_ - F+ - axe + PI_ x.‘)[, > 0 (6.5) 

If an end Is present, pa is found from condition (6.5) with the equal 

sign. Then the transverse dimension Is undefined, the ordinate gr is de- 

termined from 
& = 0 (6.6) 

Furthermore, in this case Ax, and Ix are negative along bC. Conse- 

quently, the necessary conditions for an outer extremwn will be 

(a~._ f p_ - &+)b 5 0 (6.7) 

F, - (F,) > 0 along bg (64 

The equations obtained constitwe a system of 

necessary conditions which determine the shape 

of the optimum contour. Freedom of the choice 

of characteristic ad permits the construction 

of a contour of the required length. The selection 

of Lagrange's constant multipliers satisfies con- 
X dltions (2.1). 

Fig. 4 Equations (4.6) to (4.8), (4.ll)and (4.12) 
wrlttenat point b , and conditions (4.13) allow 
to express glb, clp , kb, 0; and pb through 

flow parameters y and x at b . In particu ar 9 

Substitutions of this expression into (6.3) to (6.5) and (6.7) leads to 
relationships which for the optimum contour must be satisfied In b by flow 

For example, in the absence of lsoperimetric con- 
fl%:%~~~6.!) $ldz the Busemann condition [l] 
sible processes Is reflected on these relationships 

The presence of lrrever- 
through the form of 

derivatives with respect to p and T . The same relationships can be 
obtained in a different way If one takes Into account that for the optimum 
contour the end element of the contour ab and the end are also optimum. 

7. If in the vicinity of a the following limitation is Imposed 

lx” I < li’fu) 

where x(y) is a given function, then instead of a discontinuity in 

there is a region of outside cxtremum aa0 
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Xm = f K(y) signs (7.2) 

which smoothly joins with the region of two-sided extremum cob , Now (Fig. 
4 and 5) the variations of parameters can be different from zero in the en- 

tire region c . Therefore we will require that 

Equations(4.1) to (4.5) be satisfied also in the 

entire region c , and Equations (4.6) to (4.8) 

be satisfied along the entire characteristic ob. 

However, the necessary condition for two-sided 

extremum (6.2) is now satisfied only along e”b. 

Other relationships are satisfied without change. 

As. a result we obtain 

X no 

Fig. 5 
6% = (j U”6x CEy 

a 

Let us vary x0 only In the region mn to the right of the point m 

on aaO, and let maxl6x”l and Iv.- Y,, 1 be small of the same order of mag- 

nltude. With an accuracy to quantities of higher order 

According to (7.1) and (7.2) for admissible 6x” 
?a 

Consequently, the condition that aa’ is a region of outer extremum has 

the form II0 

s dY - Y,,) u” 44 < 0 (7.3) 
m 

for any point m along aa’. We note that a sufficient condition for ful- 

fillment of this inequality will be 

U" Ez cr?, - (@, + @)' < 0 along aao (7.4) 

8. Conditions determining the optimum contour for equilibrium and frozen 

flows are obtained from relationships found above by taking Into account that 

In these cases parameters Q which vary according to Equations (1.7), are 

absent. Therefore, in order to obtain the mentioned conditions it is suf- 

ficient to omit Equations (4.7) and (4.9) and terms which contain p, h, U, 

a and y In the other equations. Furthermore, the necessity for equations 

containing g3 and a disappears because it turns out that in this case 

1-113 MS?> B and the shape of the contour are independent of c\~ r;nd a . 

For the solution of the problem now the following equations and conditions 

are used: Equation (i.3), (1.5) and (1.7) to (1.10) 
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where the upper sign refers to characteristics of the first family In 

flow field; condition (4.6) applies along the closing characteristic 

Equations 

(8.1) 

(8.2) 

the 

and 

(8.3) 

(8.4) 

and (1.4) apply along ab . Equations (6.2) in the region of two-sided ex- 

tremum, (6.3) to (6.5) and (6.7) in point b , (6.6) In point 0 , (6.8) 

along w , and (7.2) to (7.4) along auO,remain unchanged. Furthermore, 

P = P (P, T,$), h = h (p-7 T, 9) 

The conditions at dlscontlnulties can also be obtained without difficulty. 

Further slmpllflcations depend on the form of lsoperlmetrlc conditions. 

If p, T and v db not appear In them, then along ab 

I-%= 7 1, I-%-T-P (8.5) 

In the absence of lsoperlmetrlc conditions we obtain from (6.2) 

p = pb =: const C3.6) 

Since In this case [6] all streamlines In adb or in a'db are extremals, 

then Equations (8.5) and (8.6) are satisfied everywhere in adb or a"db . 
From this It Is easy to find solutions which were obtained by going to a 

control contour. 

For two-dimensional flow the problem is substantially simplified If the 

parameters are constant along ao . Since In this case all characteristics 

of the same family have the same properties as ao , from (4.6) nnd (8.2) 

to (8.4) In the region of two-sided extremum we obtain, 

This result Is also obtained by conventional methods of variational cal- 

culus since for a given flow, parameters along ab depend only on x'. It 

Is evident from (8.7) that if + Is Independent of x and y , the region 
of two-sided extremum Is linear. 
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Derived conditions constitute a basis for constructlon of optimum contours 

with application of numerical methods. For application and verification 

these methods the simple solutions presented above can be usea. 
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