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The problem of shape determination is examined for two-dimensional and axisym-
metric bodies with minimum drag and for nozzles with maximum thrust under
conditions of steady supersonic flow of inviscid and thermally nonconducting
gas in the presence and in the absence of irreversible processes of the type
of chemical reactions proceeding at finite rates. It assumed that the reglon
of influence of the part of the contour which 1s to be determined is bounded
by characteristics and does not contain shock waves. The boundaries with
respect to the body contour are arbitrary; the dimensions of the body, the
area of the surface, the volume etc. can be prescribed.

In the present study parameters on the surface of the body determined by
a system of non-linear equations in partial differentials, appear as function-
ale of a form which 1is unknown in advance. 1In problems snlved up to recent
time [1 to 9] this difficulty is overcome by a transformation to a control
contour as suggested by Nikol'skil [10]. However, this transformation is
applicable vhen only the dimensions of the body-are prescribed and when irre-
versible processes are not present.

A method for solution of problems which do not permit such a transfor-
maticn was proposed recently by Guderley and Armitage [11) and independently
by Sirazetdinov [12]. Application of this method to problems of the present
study permits to obtain the necessary conditions of an extremum which serves
as a bacsls for the construction of optimum contours., Furthermore, it is
demonstrated that in a number of cases it is necessary to permit disconti-
nuities in Lagrange's multipliers for continuous parameters of flow. It is
shown that these discontinuities can occur along characteristics and stream-
lines. Relatlonships for discontinulties are cobtalned.

1. Let x and y be orthogonal coordinates; in the axisymmetric cases
the x-axis 1s orlented along the axis ol symmetry from left to right. As
indepenacent variables we take y and the flow function @, which 1s de-
termined by Equation

dy = y'p (— vdx + udy)

where p 1s density, u, v are projections of velocities on the x and
y-axes; v = O and 1 for the twc-dimensional and axisymmetric case respective-
ly. With the adopted varlables the flow 1s described by Equatlons
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Ll = g%. _———-—-ma%\}; = 0 (Of motion) (1'1)

Ly = 60’;5”)—1 + a((;‘qi”) =0 (of continuity) (1.2)
L3Epu%§-+ pv %Z——{—%f—}:() (of motion) (1.3)
L, = 3_; — ._:_. =0 {of streamlines) (1.4)
y3+vz+ h=H (b) {of energy) (1.9)

Here p 1s the pressure, » the speciflc enthalpy, ¥ total enthalpy
which 1s a known function of § . Let the thermodynamic state of the gas
be defined by the pressure, by the temperature 7T of approaching degrees
of freedom of some component of gas and by n parameters ¢, connected with
irreversible processes (4 = 1,...., n). These parameters can be concen-
trations of components, energles of varlous degrees of freedom etc. Let us
introduce an n-dimensional vector q = (¢,,..., g.). Functlons of the type
7€y g, ) will be written in the form r(q) . By virtue of the above
mentioned, Equation of state and Expression for h have the form

p=rp( T, q,), h=nh(p, T, q,y) (1.6)
The change in parameters qQ 1is described by Equations

oaq _ownT.q. ¥ _ g (1.7

preeJNNEL 2N i
Ix == @?; o H

where L and @ are vectors with components 7, and w, ; «, 1s the rate
of change‘ of parameter ¢, . The right-hand members of (1.6) and w, are
known functions of p, I, @ and ¢ . The presence of ¢ shows that dif-
ferent gases can flow along different streamlines.

We introduce the sound velocity e through Eguation

- pT l o329
2= o (= — 1.8
¢ _Pp+hT (p h,,) (157
Here
_ (o () _(y o (21
o (3}5)7,@&’ br = (GT Py’ P \OpiT ] T <u?)w 0.

Equations (1.1) to (1.7) form a complete system. For %+ v¥-. > o
this system has three familles of real characteristics. These streamlinces
with § = const for which Equations (1.3) to (1.5) are satisfled, and Mach
lines for which

da'y LV E=CF D gy g (1.9)
y*pow?
dyih E.liﬁf::lfii;ﬁﬁ‘dq;;: 0 (1_10)

y" pewt
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we o2 h
wily V22 dp+{”?”+(p_%§_)w} 20 iy

Here, vectors are

h = (h1719 SRIEE} hqn)’ p= (qu, ey Pqn)

[ an> _(dp
hqi*(——— ' Pqih(a—q‘i

o) )
7 D, T, %, g0y 0, T, %, gj7q;

The upper index refers to characteristics of the first family.

All variables are dimensionless. The reduction to dimensionless form is
achleved by dividing x and y by I , the velocities by u, , the den-
si§ies by px, Pressures by p.w,?, temperatures by A 'p.?, enthalpies by
we- &and § by lv+dp  w,, where 1, p, and p, are quantities with dimensions
of length, veloclty and density, # 1s the gas constant of certailn gas. The
parameters ¢, are reduced to nondimensional form by teking into account
thelr various dimensions.

2. In the problem under consideration it 1s required to find the neces-
sary conditions determining the form of the contour gy which insures a
minimum of wave drag (Fig. 1) or a maximum of thrust (Fig. 2) for a given

g flow to the left of the characterlistic gqo ,
A A

In addition to the position of point a , the
length of the body Y , the area of the side sur-
a face, the volume etc. can be prescribed.

7

The desired contour may consist of reglons of
two~sided and outer extremums. The regions are
determined by the statement of the problem and
the limits of applicabillity of utllized equations.
For flxed length this willl be the section py of

by the stralght line x = Y , where 8z <0 1s per-
missible. For & given cross-sectional dimension
Fig. 1 ¥ the region of the outer extremum will be a
section of the straight line y = Y . In the
axisymmetric case and In the case of a symmetrical flat body such a region
coincides with a sectlon of the axis of symmetry. To the limit of applica-
bility of Equations {(1.1) to {1.7) without taking
into account shock wave relations, there corre-
sponds a section of the curve of maximum compres- g
sion [6] such that the shock wave which is formed 91
by the approaching flow starts at the boundary of
the region of influence for the desired area of
the body.

The direction of the prescribed contour to the
left of & and the directlion of the contour which
is determined from the solution of the variatlon- Vs,
al problem are different in the general case. At a
a , therefore, passage of flow over a convex cor- d
ner takes place {the case where the flow over the
contour gb results in shock wave formation at g
is not considered here)., On the basis of techni- ¢
cal conslderation a discontinuity in the viecinity - T
of g can be forbidden, for example, due to
boundaries on x’= g°x/dy®. This will also give
some part of the outer extremum. Plg. 2

V9o «

Among the enumerated reglons of the outer extremum we will examine only
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the first and the last and we will investigate only the case where the para-
meters are constant in the vicinity of »y and do not depend on the shape
of the contour ag . With an accuracy to an insignificant factor the wave
drag or thrust are given by

b g
%= S y'pdy + § ¥'prdy
a

where b 1is the connecting point of the region with a two-sided extremum
and the section bg , pp = const 18 pressure on the by ; points 2 and g
may colncide.

We have isoperimetric conditions (taking into consideration that u = vx’)
in the form
b ;

Kj = Sﬁ (y3 z, v, p, T’ q, x,) dy +

a

f(!]' (ys Z, .2’3’) dy (]»2 1: e »'n) (21)

S ey

where X! are glven constants, ' and g°!are known functions, m 1s number
of isoperimetric conditions; prime designates derivatives(évay)wzwa; indi-
ces a, b,... are given to parameters at corresponding points.

3. We utilize the methods of Guderley, Armitage and Sirazetdinov [1l and
12]. On the surface of the body the flow parameters are determined by
Equations (1.5) and {1.6) and by differential Equations (1.3), (1.4) and
(1.7) along ap and (1.1) to (1.3) and (1.7) in the region of influence g,
bounded by characteristics ae¢ and gb 2and by contour gb . We construct
the functionals

b g
I=$(® +aLy +BL, +yL) dy + \ Fay +

a b
+ S S(}h};l + oLy + 15ly + QL) dy dy
[#]
O=0@W, z,0,p T, 0.2, )=yp+ 0Ny, z,v,p7T,q,2)

j=1

m
0
F=F @,z 2\ = vaT—{—E N (y, z, 2')
=1
Here A*,...., A* are constants, & (¥), B (), Y (), py ¥y 9),s 2 (¥, ¥)s

ps @, ), Q (¥, V) are variavle Lagranges multipliers, y and Q are n-di-
mensional vectors. By virtue of Equations (1.1) to (1.%) and (1.7) and
conditions (2.1), variations of I and x colincide for permissible vari-
ations.

We shall find the first \rariat_ion of I 1in the absence of limitations
wlith respect to x”, i.e. for the case where a discontinuity in the contour
is permitted (Fig. 1 and 2).

By virtue of (1.5) and {1.6)
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h h
uw v ) §
O = — h"—-T dug hy v — hp §p — th Sq

Therefore 1f { = {(p, T, q,%), then

8= — b %“{r‘i sv+(§p——§}"';-:£)ap+ (;—-%T;)aq
Here £ = €q _ (gq“ o Qqn)
b= (g-%)r,q,q, br= (g—g’)p.q,q, ! A (%%)p,T.45a&qi.¢

In order to eliminate variations under the integral signs which appear in
the process of varliation due to derivatives, we utlilize the formula for in-

tegration by parts and a relationship which is a consequence of Green's
formula

({(v S+ M%%‘)dydw: - \GS (55 + 5 ) osavan + § (mh—n) szay

v o

where the contour integral 1s taken along the unvaried boundary of the reglon
of influence in the plane yy . Varlation of double integral, which 1s re-
lated to a change in boundary (¢ , 1s not present because the expression
under the integral 1s equal to zero. However, variations of intepgral alcng
ag , which are connected with a change of coordinates ? and ¢ are dif-
ferent from zero. Increments in coordinates of these polnts willl Le deslg-
nated by Ay and Ax . With an accuracy to small terms of hlgher order

dx = Ax + x’Ay .

Let @g be the ‘closing characterlstlic of an expansion wave fan. Small
changes of the contour gp have no influence on the flow in geg . There-
fore here, including ge¢ and o4 , varlatlons of parameters are equal to
zero. Purther, &x, disappears because @ 1s given, the variation §q,
disappears by virtue of Equations {1.7); <finally, 8u,, 8v, and 4p, are
connected with the equality (pubu + pv8y + 8p), = O . The latter follows
from Equation (1.3), which at g has the form pudu + prdv + dp = O and
the fact that here u = u{p) and v = v{p) and consequently by = (du/dp)ér
and dv = {dv/dplép .

By taking into account what was mentioned above and by utilizing (1.3),
{1.7) and (1.8) we f£ind

8y =8 = {®_— F,— (D +B)_z_ 4 Fr z,'}s Ay (D, +B_— Fer oAz +
- {a (pudu + pv dv 4 Op) + y¥oq}s + FgAyg -+

b g
1§ U9z + U bu + Ut + Up + Usq) dy + § (Fx — (Fe)'} 82 dy +
I b

d
+ S 7 6u +v2 80 4+ V2 0p -+ Voq) dy -+
b

+ 5 (Wt ou + w2 o0+ W p + Wogq) dy dy (3.4)
Ge
(D= (a(D/ax')y, x, v, p, T.q, X7 o= (3:'7/’3:6')% x )

where ¢° is the reglon aedb; minus and plus subscripts are attached to
parameters at point P before and after the discontinuity. v, ', w, U,
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V and W are known functions of flow parameters and Lagrange's multipliers.

4, Let us examine various terms of Expression (3.1). For any contour
ag some of them can be reduced to zero by a special choice of Lagrange's
multipliers. We will determine u,, Mz, H:s . & 1s obtalned from Equations
W= 0, ¥¥= 0, ##=0, W = 0 , which we will represent in the form

vy 1 oops, WO, Qe (4.1)

» 1 dpq Qe
Wz——u_W = "u by Jpvzay urt 9 ' ot

+Q{p(wp—"’§;:") '%+%§}=o (4.2)

E L

P A T T
WEy“:zv(P_%?)%ﬂ%—%(pﬂa%)%+

+(———--~Q'°’T Qo) v =0 (4.4)

The system of Equations (4.1) to (4.3) is'cf the same type as the system
of flow equations. It is elliptical for 1w < p and hyperbolic for py> o.
For p > ¢ there are three families of real characteristics, which coincide
with characteristics of Equations {1.1) to (1.7). Along the streamline
Equations (4.3) and (4.4) are satigfied, along Mach lines

““““ {
T T
y'prie \ T
-k
+Q<wp-~w7 ”)p}%"“-’—+9—.‘}’dm=o (4.5)
ILT U pv v

where the upper sign corresponds to characteristlics of the first family.

We obtain boundary conditions along the characteristic g» and the con~
tour ab.

By equating coefficlents in front of su, v and &8¢ along db to O
we obtain

mA e =0 (4.6)
Pr g (ouy— S5} o7+ pgou = 0 (4.7)

h
o ( p— g,f—r—) — QupPy = 0 (4.8)
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If not especlally mentloned, here and below the upper signs refer to the
external problen (Fig.l) and the lower signs to the internal problem (Fig.2);
dy/dy along gb 1is determined from {1.10). Satisfaction of {4.6) and (4.7)
along db leads also to a transformation to zero for the coefficlent of I©
by virtue of (1.10). We find the boundary condition for ap by examining
coefficients of ¢, U7, ¢®, U . Along gb we determine multipliers g, 8,
y and 4y, from Equations 0= 0, ("= 0, {#- C, U = 0 , which by taking into
consideration equations for 7' and U can be presented in the form

— Orh | o erhy ., 1 (yrop)h
"'U='\’—®q+7;;“ ;(P”'ﬁ;)P+T (T'm)q*——h‘;[j';,”-'~-0
— 2 - U= () — O, + (4.9)
2 R = »
5.;07 (@ — apyp™p" — qu,v™) — yur? =0 (4.10)
s 4 v®, Op /¢ 2o prh
Us:i?/!‘l**‘q)p“@*r“g;(—(;‘ ’*’%)”F;;,‘(P “*‘g;)‘"“
@ i
——)j—{-‘{;ww e —hp)}zo (4.11)
ul? — vUt = u®, -+ ywuv™? + 3-:—2— B+u) =20 (4.12)
CDU = (6@/311)% xp T,q " A (DP =D/ ap)U’ %0, T,q %, 2
(DT = (3@/87’).{4‘ X, 0, P, q, % A G)gi:(a@ ;}aQi)y, %0, 0. T @G #0;. %0 A

Here ¢® 1s transformed by taking into account (4.10). As initial con-
ditions for integration of (4.9} and {4.10) we take

a, = 0, ¥y =0 (4.13)

Therefore, for any smooth contour gb , multipliers o, B, v, My, Mgy Ua
and @ can be selected such that coefficlents of i, 1, Wi = 1,2,35 v,
V, W, a,, y, in Equation (3.1} .are transformed to O . Actually, it is re-
quired for this that relationships (4.1} to (4.13) are fulfilled. For any
contour gbp , the flow in aedb can be calculated, for example, by the

method of characteristics and consequently 1s known. For known flow para-
meters, o and vy along gb are determined by Equations (%.9) and (4.10)
and conditions (4.13). Subsequently u,, in particular yu,,, is found along
eb from (4.11), and from (4.5) to (4.8) with utilization of u,,, the values
My Mas Ma and Q are determined along ¢dp . Values of these quantlities
along the characteristic gdp , and u, along the contour g» with the ald

of Equations (4.1) to(l4.4) or of equivalent Equations (4.3) to (4.5) permit
to £ind u;, Mps Ms, @nd Q in the region ¢°. Finally, the multiplier 8
along gb 1is determined by Equation {#.12). It is clear that the Lagrange
multipliers found in this fashion are dependent on the shape of the contour

ab

8, If gp contains a discontinulty (Fig.3), then it 1s not possible to
satisfy all obtained condltions with Lagrange's multipliers which are con-
tinuous in ¢ . Actually, y,, uzs s, and Q along characteristic ke are
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found from conditions along xp and 43 . Found in this fashion, the value
#yy bto the left of the discontinuity will not satisfy Equation {4.11} in the
general case. Consequently, it is necessary to admit the possibility of
lines of discontinulty in Lagrange's multipliers for continuous parameters
of flow.

Let ] be such & line. In the variation of I the reglon ¢ 1is divided
into reglons of continuous Lagrange's multipliers. In these reglons and
along the boundaries abp and ¢b the functlons u;, uy, Wy and Q are
determined in the previous fashion, i.e. Equations (4.1) to (4.13) are satis-
fled. Let [g] be a Jump ¢ along ] . Slnce the flow parameters and
thelr variatlions are continuous along ] , there appears an additional in-
tegral in Expression (3.1}

S(Sléu + S8 + §%p + S ggaq)dy

i
where S, %, $%, 8§ are linear orthogonal functions of [y, ], [uz], [ual
and [Q], which alsc depend on flow parameters and dy/dy along 1 . We

will determine [u,], [ual, [us] and [Q] such that the following conditions
are fulfilled along 7

§1=0 S2=0 S3=0 S (.1)

If 7 18 not a streamline and not a characteristic, this gives (n + 3)
linearly independent linear homogeneous equations with respect to (n + 3)
variables [u,], [wz], [ps], [Q). Consequently, in thls case we have

] = Il = Il =0, [Ql=v
i.e. the discontinuity is not present.

If 1 1s & characteristic, then §® 1is a
linear combination of S' and S° and conditions

(5.1} give pe
=0 (5.2)

il + lpad (e — G} o7 Hllou =0 (5.3)

k
Fig. 3 [, (P — le> — [Ql yp* =0 (5.4)

hy

Furthermore, since (4.5) is satisfled from each side of the cnaracterilstic,

then g h
d fd + %}l_ d ol + {[Pval pw (P - %‘) — Qlorhr™ —
¥ d _ S
— Q] (mp — m;T p) p} ;;;;% + [Qlowv?dr =0 (5.5)

Here and in (5.2) the upper sign corresponds to a characteristic of the
first family; dy/d¢ in (5.3) 1is determined from (1.10)}. Equations (5.2)
to (5.5) determine the jump in all quantities along a given characteristic
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from the jump in one of these quantitles at some point. By virtue of line-
arity and homogeneity of (5.2) to (5.5), all Lagrange multipliers are elther
continuous or discontinuous along the entire characteristic.

Ir 7 1s a streamline, then dy/dy = O and in addition to this & 1is a
linear combination of S§* and $°. As a result we obtain

p] = [p] =0 (5.6)
From this condition and Equations (4.3) and (4.4)

el o (e %%+@"%%ﬁ () =0 6

pv
A S 2 Q) wr) S+ Q1 ) =0 (59

These equations are also linear and homogeneous, consequently, 1if only
at one point of the streamline, [u;] = 0 and [Q] = O, then these conditions
are fulfilled along the entire streamline.

Thus the Introduction of discontinuities permits to satisfy all conditions
of the previous section. In particular, in the case shown in Fig.3 the line
of discontinuity will be the characteristic xe

Continuity in flow parameters was assumed above. Discontinulties in flow
parameters, for example shock waves, will also be discontinuities in Lagran-
ge's multipliers., When relationships are obtained at such discontinuities,
it is necessary to take into account the relationship hetween the variation
of flow parameters from different sides of the discoﬁtinuity.

6. In accordance with the choice of Lagrange's multiplliers the expression
for &y Dbecomes

8y = 8l = [®. — F, — (O +B)_ 2.'], Ay, + (Dw_ + B — Fu,), Azy -

b
+ F Ay, + % U°sz dy +

a

(F. — (Fo} bz dy 6.1)

[ Bt )

where,; in contrast to (3.1}, all variations are independent.

In the region of a two-sided extremum gp the variations in x are arbi-
trary, consequently the necessary condition for an extremum has the form

U =®, — @4+ D) =0 (@, = @D /02), » p 7.q.x.2) (6.2)

For an arbitrary length there is no end, and in Expression (6.1) only two

first terms remain, and these are without F, and F.,. Since 4x, 1is arbi-
trary, the length of the contour 1s determined by condltion

(@ +B), =0 (6.3)
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while the ordinate y, = y, 1s cither given or is found from condition
{@ — (P +B)z},_=0 (6.4)

For a limlted length the end may also be absent. The ordinate py, as
before is elther given or determined from (6.4). In the first case Ay, == 0
are admissible (the upper sign refers to the external problem) and the neces-
sary condition for a minimum of drag or a minimum of thrust will be

{(D- - F+ - (d)x' + B)— x—.’}h > 0 (6-5)

If an end 1s present, y, is found from condition (6.5} with the equal
sign. Then the transverse dimension is undefined, the ordinate Y, 1s de-
termined from

F,=0 (6.6)

Furthermore, in this case 4x, and &x are negative along »y. Conse-
quently, the necessary conditions for an outer extremum will be

(v +B.—Fu o0 (6.7)
Fy— (Fv)' >0 along bg (6.8)

The equations obtained constituce a system of
necessary conditions which determine the shape
of the optimum contour. Freedom of the cholce
of characterlistic g4 permits the construction
of a contour of the required length. The selection
of Lagrange's constant multipliers satisfies con-
ditions (2.1).

Fig. 4 Equations (4.6) to (%.8), (4.11)and (4.12)
written at point » , and conditions (4.13) allow
tO exXpress ;,, Hgys Hsps @ and B, through

flow parameters y and x at p . 1in particular

_ pvle z:(DU ‘ (DT (_1_ )} .lfi’f \)
B”—FVwZ-cz{%"?@ﬂ? p )i By

Substitutions of this expression into (6.3} to (6.5) and {6.7) leads to
relationships which for the optimum contour must be satisfied In » by flow
parameters y and x . For example, in the absence of lsoperimetric con-
ditions, (6.5) yields the Busemann condition [1]. The presence of irrever-
sible processes is reflected on these relationships through the form of
derivatives with respect to p and T . The same relationships can be
obtained in a different way if one takes into account that for the optimum
contour the end element of the contour gp and the end are also optimum.

T. If in the vicinity of o the following limitation is imposed on x”
"] < K(y) (7.1)

where K(y) is a given function, then instead of a discontinuity in ¢ ,
there 1s a region of outside extremum ac®



358 AN, Kraiko

2" = + K(y) signz (7.2)

which smoothly joins with the regiun of two-sided extremum ¢°b . Now (Fig.
4 and 5) the variations of parameters can be different from zero in the en-
tire region ¢ . Therefore we willl require that
Equations(4.1) to (4.5) be satisfied also in the
entire region ¢ , and Equations (4.6) to (4.8)
be satisfled along the entire characteristic ap.
However, the necessary condition for two-sided
extremum (6.2) is now satisfied only alongz go°b.
Other relatlonships are satisfied without change.

As a result we obtain

oy = §° U°bx dy

a

Fig. 5

Let us vary x” only in the reglon mn to the right of the point nm
on ga°, and let max|dx”| and |y,~y,| Dbe small of the same order of mag-
nitude. With an accuracy to quantities of higher order

8y = G (v —v,) U°dy ) § 8z dy

According to (7.1) and (7.2) for admissible &x”

n
"
\ 6" dy <0
m
Consequently, the condition that aa® 1s a region of outepr extremum has
the form

o

a

\ @ —,) U dy <O (7.3)
m

for any point m along gaa®. We note that a sufficlent conditlon for ful-

fillment of this inequality will be

U= ®, — (D +B)Y <0  along aa® (7.4)

8. Conditions determining the optimum contour for equilibrium and frozen
flows are obtalined from relationships found above by taking into account that
in these cases parameters q which vary according to Equations (1.7), are
absent. Therefore, in order to obtailn the mentioned conditlions it is suf-
ficient to omit Equations (4%.7) and (4.9) and terms which contain p, h, w,

R and vy in the other equations. Furthermore, the necessity for equatlons
containing g, and o disappears because 1t turns out that 1n this case
$;s Mps B and the shape of the contour are independent of 3 &and a

For the solution of the problem now the following equations and conditions
are used: Equation (1.3), {1.5) and (1.7} to (1.10)
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/s — o2
wrd-> i prc “ap + - dp =0 (8.1)
w0 — c2
dp £ Y2, = 0 8.2)

where the upper slgn refers to characteristics of the first family in the
flow field; conditlon (4.6) applies along the closing characteristic and
Equations

v®, () 1
+ym + C — Py + %(T ”‘.h‘p) =0 (8.3)
u®, + 5 (B £ p) = 0 (8.4)

and (1.4) apply along aob . Equations (6.2) in the region of two-sided ex-
tremum, (6.3) to (6.5) and (6.7) in point » , (6.6) in point g » (6.8)
along »¢ , and (7.2) to (7.4) along gaa° remain unchanged. Furthermore,
P:P(p,T,lp), h=h(p-,T,'(]))
The conditlons at discontinuities can also be obtained without difficulty.

Further simplifications depend on the form of isoperimetric conditions.
If p, I and v do not appear in them, then along abd

m=F1 p=7F8B (8.5)
In the absence of isoperimetric conditions we obtain from (6.2}
B = B, = const (8.6)

Since in this case [6] all streamlines in gdp» or in g°dp are extremals,
then Equations (8.5) and (8.6) are satisfied everywhere iIn gdd or a°dd .
From thils it 1s easy to find solutions which were obtained by going to a
control contour.

For two-dimensilonal flow the problem is substantially simplified 1f the
parameters are constant along ge¢ . Since in thls case all characteristics
of the same family have the same properties as go , from (4.6) and (8.2)
to (8.4) in the reglon of two-sided extremum we obtain

D, — (00 — 20, F {0, — T2 71 (L — )| B2 ) — 0 87)

pw? TT P Vuwr — ¢
This result is also obtained by conventional methods of variational cal-
culus since for a gilven flow, parameters along g¢b depend only on x‘. It

1s evident from (8.7) that if & 1s independent of x and y , the region
of two-sided extremum is linear.
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Derived conditlons constitute a basils for construction of optimum contours
with applicatlion of numerical methods. For application and verification
these methods the simple solutions presented above can be used.
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